First Calculations of ¹⁵N-¹⁵N J Values and New Calculations of Chemical Shifts for High Nitrogen Systems: A Comment on the Long Search for HN₅ and Its Pentazole Anion

S. Ajith Perera, Adriana Gregušová, and Rodney J. Bartlett*

Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611

Received: October 20, 2008; Revised Manuscript Received: February 4, 2009

In the potential solution observation of the long-sought-after pentazole anion (N₅⁻), the principal experimental tool used for detection is NMR. However, in two experiments, very different conclusions were reached. To assist in the interpretation, we report predictive level coupled-cluster results for the spin–spin coupling constants and chemical shifts for all of the key species, which include NO₃⁻, N₅⁻, HN₅, N₃⁻, and MeOC₆H₅N₃. In the case of the shifts, an empirical estimate based on the molecule polarity enables comparison of gas-phase and observed values with expected error bars of ~ ±10 ppm. For the scalar couplings, the evidence is that the solution effects are modest, enabling the gas-phase values (with error bars are ~ ±5 Hz) to be accurate. The latter supports the observation of centrally ¹⁵N labeled N₃⁻ in the cerium(IV) ammonium nitrate (CAN) solution which could only occur if the pentazole anion had been created in the experiment, yet with too short a lifetime to be observed in NMR.

Introduction

The pentazole anion^{1–4} has a rich, though controversial history. Its first observation was reported in 1915,^{1,2} although that proved to be false. It is isoelectronic with the cyclopentadienyl anion, is aromatic, and has D_{5h} symmetry, and state-of-the-art theoretical calculations⁵ predict that it is a minimum on its potential energy surface with an activation barrier of 27 kcal/ mol to prevent autodecomposition. Despite the fact that all of the evidence points to its viability as an isolable chemical species, all efforts to prepare it or its salts have been a challenge; however, the existence of the pentazole anion deserves attention even in freshman chemistry.

The long-sought-after pentazole anion¹⁻⁴ (see Figure 1) has now been observed in negative ion mass spectra,^{6,7} followed by a potential NMR observation in solution.⁸ However, the NMR results have been controversial. They were disputed by Schroer et al.⁹ Subsequent work by Butler et al.¹⁰ concluded that their prior paper⁸ did not observe the pentazole anion because it was too short-lived. However, they argue that it was made in the experiment as proven by its unique byproduct of an isotopically labeled azide anion. The latter could only appear from the terminally labeled *para*-methoxyphenylpentazole (4-MeOC₆H₄N₅) precursor. The difference in opinion arises from the different NMR assignments made by Butler and Schroer et al.^{8,9,11}

Predictive, coupled-cluster theory offers a third voice that can contribute to understanding these experimental observations, and whether HN_5/N_5^- was indeed generated in the Butler et al.⁸ NMR experiment is significant. The discrepancies between the observations warrant further analysis using predictive level coupled-cluster theory, which we report. Furthermore, we argue that an observation of the spin–spin coupling constants, as predicted here, will help to resolve the conflicting observations.

Prior to presenting our results, let us briefly revisit the experimental evidence Butler and Schroer et al.^{8,9} cite to advance

Figure 1. CCSD(T)/aug-cc-pVQZ structure of N_5^- . The CCSD(T)/ aug-cc-pVQZ vibrational frequencies in cm⁻¹ are 766.5, 766.5, 1021.9, 1021.9, 1102.1, 1102.1, 1169.8, 1231.5, and 1231.5.

their arguments. Butler et al.⁸ report that when a fully deuterated methanol and water solution containing (NH₄)₂Ce(IV)(NO₃)₆ (CAN) and Zn(NO₃)₂, and the precursor 4-MeOC₆H₄N₅, is heated to -40 °C, a new signal at -10 ± 2 ppm is observed in ¹⁵N NMR. Furthermore, it is noted that upon heating to -20°C three NMR signals appear at -72 ppm corresponding to N₂ gas and at -283 and -147 ppm which were assigned to the terminal and central nitrogen atoms (henceforth designated as N_t and N_c) of N_3^- , respectively. Since the precursor 4-MeOC₆H₄N₅ is prepared with ¹⁵N labeled N_3^- at N_t, Butler et al.⁸ cite that the N_3^- with ${}^{15}N_c$ could not be present unless it is formed from a decomposition of N5⁻, and consequently assign the -10 ± 2 ppm signal to N₅⁻. The theoretically computed ¹⁵NMR shift of -1.7 ± 20 ppm of N₅⁻ at the DFT¹² (the computed values are believed to have error bars of ± 20 ppm, as described by Burke et al.¹²) level is quoted as further supporting evidence for the assignments. On the other hand, Schroer et al.⁹ who subsequently duplicated Butler's experiment report that there is no evidence to support the formation of $N_5^$ or the N₃⁻ anion, but the observed species are instead NO₃⁻ and NH4⁺. Schroer et al.⁹ assigned the NMR signal observed at -11 ppm in their experiment to NO₃⁻, disputing the Butler et al.⁸ assignment of it to N_5^- . The other key feature in the first experiment is that the ${}^{15}N$ NMR signal assigned to the N_c atom in N_3^- has also been questioned. First, it is argued that the excess CAN used in the first experiment would have oxidized N₃⁻ to N₂ before detection, and second, that 4-MeOC₆H₄N₃, a decomposition product of 4-MeOC₆H₄N₅, also has an NMR signal of -148.16 ppm for N_{γ} (a solution of 4-MeOC₆H₄N_{γ}=N_{β}=N in CH₃OH), close to the -147.2 ppm which was incorrectly

 $[\]ast$ To whom correspondence should be addressed. E-mail: <code>bartlett@qtp.ufl.edu.</code>

TABLE 1: Computed and Measured (Experimental Gas-Phase Data Shown in Bold) Chemical ¹⁵N Shifts of the Molecules of Interest (in ppm with Respect to CH_3NO_2 Internal Standard)^{*a*}

	- ·		· · · · · · · · · · · · · · · · · · ·		
	cc-pVTZ	cc-pVQZ	PZ3D2F	CP corrected	experiment
N ₂	-85.8	-80.1	-77.5	-70.5	-75.3, ²⁷ -70.2 ²⁷
N _t N _c O	-251.4 (N _t)	-246.3	-244.9	-227.4	$-232.3^{27} - 225.0^{27}$
	-159.1 (N _c)	-152.7	-149.9	-143.9	-148.0 , ²⁷ -140.0^{27}
NH ₃	-410.7	-408.7	-407.2	-389.7	-400.1 , ²⁷ $-380.2^{25,27,28}$
CH ₃ CN	-137.6	-134.4	-132.3	-137.3	-126.7 , ²⁷ -137.1^{28}
CICN	-150.3	-147.0	-145.0	-139.0	-144.0^{27}
HCN	-127.3	-125.2	-123.0	-128.0	-127.5^{27}
NO_3^-	-11.7	-2.6	1.5	-5.5	-11.5 , ⁸ -4.0^{27}
$N_t(N_cN)^-$	-310.6 (N _t)	-309.0	-309.1	-291.6	$-283,^{7}-282.2^{8}$
	-145.1 (N _c)	-136.2	-131.9	-126.9	$-147,^{7}-133.6,^{8}-130^{28}$
NH_4^+	-380.7	-382.4	-381.3	-363.8	$-359.8,^{8}-359.6^{27}$
N_5^+	-111.7 (N ₁)	-105.7	-103.1	-98.1	-100.4^{29}
	-179.0 (N ₂)	-174.2	-171.7	-165.7	-165.3^{29}
	-264.1 (N ₃)	-262.4	-260.8	-243.3	-237.3^{29}
N_5^-	-22.8	-16.5	-13.5	-6.5	
N_5H	-136.7 (N ₁)	-131.3	-128.5	-121.5	
	$-44.0(N_2)$	-37.6	-34.6	-27.6	
	$-8.7(N_3)$	-0.5	3.3	10.2	
MeOC ₆ H ₄ N ₃	$-295.9(N_1)$			-278.4	
	-139.5 (N ₂)			-133.5	-135.5^{8}
	-137.2 (N ₃)			-131.2	-148.2^{8}
MeOC ₆ H ₄ N ₅	$-87.8(N_1)$			-92.8	
	$-27.0(N_2)$			-34.0	-26.7^{7}
	13.9 (N ₃)			6.9	5.67

^{*a*} The unique N atoms of N_5^+ , N_5H , $CH_3OC_6H_5N_3$, and $CH_3OC_6H_5N_5$ are labeled as N_1 , N_2 , and N_3 in accordance with the literature.

assigned to the N_c of N₃⁻ in the previous experiment. The absence of the signal corresponding to N_β (-135.5 ppm 4-MeOC₆H₄N₃ in CH₃OH) is explained as a result of the small signal-to-noise ratio based on the fact that, in the Schroer et al.⁹ experiment, N_β has a much smaller peak height than does N_y. Both groups agree that the signal at -283 ppm is from the ¹⁵N labeled N₃⁻ at N_t but disagree on its origin: for Schroer et al.,⁹ it is from the unreacted N₃⁻ present in the reaction mixture, while, for Butler et al.,⁸ it arises from the decomposition of N₅⁻.

In an exhaustive follow-up study, Butler and co-workers¹⁰ reexamined the CAN mediated N-dearlyation of N-p-anisylazoles in order to firmly establish the presence of $N_3^{-15}N$ labeled at the N_c position and rule out the possibility that the NMR signal that they assigned to N_3^- in their first experiment is not due to 4-MeOC₆H₄N₃, as Schroer and co-workers⁹ have claimed. Using both mono- and dilabeled 4-MeOC₆H₄N₅, they have shown that the signal that they assigned to the ${}^{15}N$ labeled N_c of N_3^- is a strong singlet and a weak overlapping doublet, a pattern which could only arise from neighboring symmetry equivalent ¹⁵N nitrogen atoms as in N₃⁻. Furthermore, they demonstrate that the strong singlet for N_c is particularly significant, since it can arise for N₃⁻ only from the decomposition of HN_5/N_5^- , and not from any ^{15}N labeled $Ar-N_3$ fragments. Butler and co-workers¹⁰ showed that the N_{β} ¹⁵NMR signal of 4-MeOC₆H₄N₃ is more intense than N_{ν} , which invalidates the claim of Schroer et al.⁹ that the signal due to N_{β} is not observed in the previous Butler et al.⁸ experiment because of its low intensity. It is shown that the Schroer et al.⁸ observation that N_{β} of MeOC₆H₄N₃ has twice as strong a ¹⁵NMR signal as N_{γ} is an artifact due to the contaminant Ar-N₃. As for the Schroer et al.⁹ claim that the -248 ppm ¹⁵N NMR signal of $N_3^{-15}N$ labeled at N_t is from the residual N_3^{-} from the reaction to synthesize MeOC₆H₄N₅ rather than decomposition of HN₅/N₅, Butler et al.¹⁰ note that it is unlikely that it could only appear after the CAN treatment, since had it been a contaminant its signal should have been present throughout the experiment.

Both aspects of NMR spectra in the gas phase, namely, the vector chemical shifts^{13,14} and the scalar spin-spin coupling constants,^{15,16} can be very accurately described by coupled-cluster theory. Calculations of the former have been shown to be accurate to $\sim 1-2$ ppm for ¹³C,¹⁵ with calculations of the latter accurate to ~ 5 Hz for a variety of molecules.^{15,16} However, a similar calibration for ¹⁵N shifts, required to address the N₅⁻ problem, has not been made. Furthermore, the observation of the shifts in solution is subject to dramatic changes compared to the gas phase. Hence, to offer a meaningful theoretical comparison, suitable estimates of the chemical shifts in solution have to be made. For the scalar term, though, solution effects have generally been found to be less significant, so their observation of the pentazole anion.

Computational Details

The UF and MAB versions^{17,18} of the ACES II program are used for all calculations. The geometry optimizations are performed using single- and double-excitation coupled-cluster methods that include noniterative triple excitations (CCSD(T)) with basis sets:^{19–21} aug-cc-pVQZ for N₅⁻, cc-pVQZ for N₅H, N₃⁻, NO₃⁻, NH₄⁺, N₂, N₂O and at cc-pVTZ level for CH₃NO₂. The ¹⁵N NMR shieldings are computed at the CCSD(T) level with gauge-including atomic orbitals (GIAOs)^{11,12} using ccpVTZ, cc-pVQZ, and pz3d2f basis sets.²² Experimental absolute shielding of nitromethane standard (135.8 ppm) was used as the reference to obtain the calculated chemical shifts.

Results and Discussion

Prior knowledge of the expected accuracy of the computed chemical shifts is a prerequisite for helping experimental assignments or making new assignments. It is established by comparing computed results with a series of experimentally known chemical shifts. For example, the CCSD(T)/pz3d2f level has been shown to have a standard deviation of ± 1 ppm for ¹³C chemical shifts,²³ but no such data for ¹⁵N shifts are

Figure 2. Computed absolute shieldings vs chemical shift difference between gas-phase computed results and experiment.

available. Hence, an exhaustive study to establish the accuracy of the computed ¹⁵N shifts was performed and further details of the error bars quoted above will be published elsewhere.²⁴ However, a selected set of computed chemicals shifts at the CCSD(T)/pz3d2f level, which are of interest in this context, are shown in Table 1 along with the experimental values. Those that are highlighted in boldface in Table 1 are well established gas-phase experimental values for the respective molecules. They are part of the selection used in order to calibrate the basis set and the theoretical method and to establish error bars (we have not used data from the two disputed experiments to establish error bars). There are no practically significant variations among the results for the three basis sets, and the cc-pVTZ and cc-pVQZ results converge toward the pz3d2f results. The situation with ¹⁵N shifts is more complex than that found for ¹³C NMR. For example, among the set of benchmark molecules, only the N_2 and the central atom of N_2O CCSD(T)/ pz3d2f ¹⁵N chemical shifts are within ± 1 ppm from gas-phase measurements. On the other hand, the computed shifts for NH₃ and the terminal atom of N2O show much larger deviations: 7 (2%) and 12 (5%) ppm, respectively, from gas-phase experiments.

Furthermore, both Butler and Schroer et al.^{8,9} experiments are conducted in the liquid phase. The ¹⁵N chemical shifts are known to have a much more pronounced influence from the medium effects compared to ¹³C shifts,²⁵ so a correction to account for the medium effects must be established. In Figure 2 (plots A and B), we have shown a plot of the deviation of computed data from experiment (both liquid- and gas-phase experimental data). We have noted that the errors of the computed results increase as the medium becomes more polar, and can be related to the absolute shielding, which is a measure of the polarity of the N atoms of interest. For example, when the N atoms are in a nonpolar bond as in N_2 , the error in the gas-phase result is about 2 ppm, and when they are in a polar bond as in NH₃, the error is 7 ppm. When these two groups of N atoms are in polar solvents, the errors increase to 7 and 27 ppm, respectively. Another noteworthy feature is that, for negative absolute shieldings, the error can be either positive or negative depending upon whether the N atom is internally polarized (the error is negative as in HCN) or neutral (the error is positive, the error is always positive as well.

These observations further affirm that a correction must be applied to the CCSD(T)/pz3d2f results to account for medium effects, and the correction has to be chosen on the basis of the nature (internal polarity) of the nitrogen atom and the polarity of the medium. By analyzing the variations between the computed absolute shielding and the deviation of the corresponding good approximation, the lower and upper bound for the errors are 1 and 11 ppm for the absolute shielding in the range of 0-50 ppm and 7 and 28 ppm for absolute shielding in the range of 50 ppm and above. In Figure 2 (plot C), we show that the deviation of the computed solution-phase shifts from experiment with and without the correction, and note that the average deviation decreases from 12.6 to 3.6 ppm (± 10 ppm maximum deviation) as a result of the correction applied to account for the influence of the medium. Details of a comprehensive study of CCSD(T) ¹⁵N NMR shifts that lead to the error bars quoted above are published elsewhere.²⁴

Having established the bounds for the errors in the computed gas-phase values, we are now in a position to assess the assignments of the two experiments in question. Purely from the point of view of considering the nature of the solvents used, especially CAN, the experimental medium is complex and highly polar and the errors in the computed values approach the upper limit. There is also quantitative evidence to support that assessment. Independent experiments show that the ¹⁵N shift of NO_3^- in polar solvents can be as low as -17 ppm and as high as -5 ppm as the polarity of the medium decreases. Neither of the two experiments show any NMR signal higher than -10ppm, which could be assigned to NO_3^- , supporting the assessment that the medium is highly polar.

As shown in Table 1 (labeled as condensed-phase (CP) corrected), the computed NMR shifts of N_5^- and NO_3^- are -6.5 and -5.5 ppm, respectively (both values include a -7 ppm correction). As we have noted earlier, the measured ¹⁵N chemical shifts of NO_3^- can vary from -5 to -17 ppm depending on the temperature and the polarity of the medium. This seems to indicate that the computed NO_3^- shift matches observed shifts in less polar solvents. The computed value for N_c of N_3^- , -126.8 ppm, is in good agreement with the Schroer et al.⁹ result (-133.5 ppm) though in less good agreement with the Butler et al.¹⁰ 144 \pm 3 ppm value for N_c . Both groups have reported similar values (-283,⁸ -282.1,⁹ and -281 ± 2^{10} ppm) for N_t , which are in reasonable agreement with the computed value -291.6. We note that the computed shifts for N_5^+ and MeOC₆H₄N₅ are also in excellent agreement with measured values.

Let us first consider the computed shifts for N₅⁻ and NO₃⁻ and the conflicting assignments proposed. Both groups observe a ¹⁵N NMR signal in the region of -10 ppm. As mentioned above, the computed shift for NO₃⁻ can vary greatly with polarity: experimentally from -11.5 to -4.0 ppm, but only NO₃⁻ falls in this range, except for pentazole itself. On the basis of the agreement shown by our corrected shifts of N_5^+ and MeOC₆H₄N₅ with experiment, we expect a similar agreement of computed and observed N5⁻ shifts. This led us to conclude that the observed NMR signal in the -10 ppm region is indeed due to NO_3^- rather than N_5^- . As noted before, the chemical shifts for N_c and N_t of N_3^- are close to what is reported for their chemical shifts by both groups. The ¹⁵N chemical shifts of MeOC₆H₄N₃ are also in the same region as N_3^{-} , further complicating the assignments. Nevertheless, Schroer et al.⁹ assign the shifts in the first experiment to MeOC₆H₄N₃, and concluded that the N_3^- shifts should be -133.6 ppm (N_c) and -282.2 ppm (N_t). Schroer et al.⁹ also question the presence of N_3^- in a highly oxidative medium such as CAN. Despite these above-mentioned coincidences, the presence of the centrally ¹⁵N labeled N_3^- is a key piece of evidence that supports the presence of N_5^- , though of too short a lifetime to be seen in NMR.

To resolve this remaining question, we suggest an analysis of the scalar NMR spin-spin coupling constants. The NMR spin-spin coupling constants that would help to unambiguously resolve the disputed evidence and establish whether the N_5^- is formed are ${}^{1}J({}^{15}N{}^{17}O)$ of NO₃⁻ and ${}^{1}J({}^{15}N{}_{t}{}^{15}N{}_{c})$ of N₃⁻. The computed values for those couplings for qz2p²² and pz3d2f basis sets are shown in Table 2. Both basis sets give the same results, indicating that they are essentially converged (the qz2p basis has been previously calibrated and shown to be well suited for NMR coupling constants,¹⁶ and the pz3d2f basis set is used to maintain consistency with shift calculations). Also shown in Table 2 are the computed ${}^{1}J({}^{15}N{}^{15}N)$ coupling constants of MeOC₆H₄N₃ (and C₆H₅N₃), and these coupling constants are also relevant to resolve the disputed shift assignments. Unlike chemical shifts, the spin-spin couplings are less sensitive to the medium effects, and it is our experience that their computed EOM-CCSD values are accurate to within ± 5 Hz. However, we must note that the comparatively large number of nuclei in MeOC₆H₄N₃ constrains the quality of the basis set that we can

TABLE 2: ${}^{1}J({}^{15}N{}^{17}O)$ and ${}^{1}J({}^{15}N{}^{15}N)$ (in Hz) Spin–Spin Coupling Constants of NO₃⁻, N₃⁻, and N₅H (FC, PSO, SD, and DSO Are Fermi-Contact, Paramagnetic Spin-Orbit, Spin-Dipole, and Diamagnetic Spin-Orbit Contributions) (Only Couplings That Are >1 Hz Are Shown)

	coupling	FC	PSO	SD	DSO	total
NO ₃ ⁻	${}^{1}J({}^{15}N{}^{17}O)$	-34.4	-7.6	-0.2	0.1	-42.1
		-32.5	-7.7	-0.3	0.1	-40.4
	$^{1}J(^{17}O^{17}O)$	1.6	-7.3	1.7	0.0	-4.0
		1.5	-7.4	1.7	-0.1	-4.1
$N_t N_c N^-$	${}^{1}J({}^{15}N_{t}{}^{15}N_{c})$	-12.3	-2.0	0.6	0.0	-13.7
		-11.2	-2.0	0.6	0.0	-12.6
	$^{2}J(^{15}N_{t}^{15}N_{t})$	-3.6	2.7	3.4	-0.1	2.4
		-3.8	2.9	3.5	-0.1	2.7
N_5H^a	${}^{1}J({}^{15}N_{1}{}^{1}H)$	-113.1	-0.7	-0.2	-0.5	-114.4
	$^{1}J(^{15}N_{1}^{15}N_{2})$	-13.3	-3.3	0.1	0.0	-16.5
	$^{2}J(^{15}N_{2}^{1}H)$	-10.3	0.7	0.0	0.3	-9.3
	$^{1}J(^{15}N_{2}^{15}N_{3})$	-13.2	-4.8	0.5	0.0	-17.5
	${}^{1}J({}^{15}N_{3}{}^{15}N_{4})$	-15.9	-4.1	0.3	0.0	-19.7
$C_6H_5N_3^b$	$^{1}J(^{15}N_{1}^{15}N_{2})$	-12.5	-1.8	1.8	0.0	-12.4
	$^{1}J(^{15}N_{2}^{15}N_{3})$	-14.1	-2.3	0.0	0.1	-11.7
MeOC ₆ H ₄ N ₃ ^b	$^{1}J(^{15}N_{1}^{15}N_{2})$	-12.8	-1.9	0.5	0.0	-14.1
	${}^{1}J({}^{15}N_{2}{}^{15}N_{3})$	-12.6	-1.8	1.0	0.0	-13.4

^a The N₅H coupling constants are obtained with the qz2p basis set²³ only. ^b Coupling constant calculations of MeOC₆H₄N₃ (and C₆H₅N₃) are not as straightforward as the others because of their size: there are 28, 64, and 228 FC, PSO, and SD perturbations, respectively. As a result, it is not practically viable to use the same basis set consistently for all three components or to use the qz2p basis set for all of the atoms. It has been shown previously that the basis set requirements for the PSO and SD terms are not as severe as those for the FC term and we could use smaller basis sets to obtain their values.¹⁴ We have taken advantage of the fact the basis set we use for the other atoms except for the N3 moiety can be of smaller size, since their effects on the spin-spin couplings on N have been shown to be smaller. The possibility of saturating the N₃ moiety by using ghost atom basis sets on nitrogen atoms is also considered, and we observed that one could use a smaller basis set for nitrogen when there are ghost atom basis functions in their vicinity. The FC results reported in the table use the tzp basis set on N and dzp basis set on two ghost atoms directly bonded to two terminal nitrogen atoms of 0.5 Å distance. We use a dz quality basis set for all of the other atoms. The PSO and SD terms are computed with a dzp basis set on N while keeping the basis sets on other nuclei the same as those for the FC term (the basis sets used here are developed by Ahlrichs and co-workers²³).

use for the spin–spin coupling constant calculations and the reported values have larger uncertainties than those for the N_3^- (see footnote of Table 2 for more details). As we can see from Table 2, the computed ${}^1J({}^{15}N_2{}^{15}N_3)$ of MeOC₆H₄N₃ and ${}^1J({}^{15}N_t{}^{15}N_c)$ are nearly identical and it would be impossible to unambiguously assign the observed NMR based on the magnitude of the coupling constant alone. However, due to the two symmetry equivalent terminal nitrogen atoms, the NMR signal of the central nitrogen of the N₃⁻ anion should show the characteristic doublet triplet pattern, while such splitting pattern is not possible for MeOC₆H₄N₃. Thus, further experimental observations to measure the relevant coupling constants would resolve the disputed assignments and conclusively establish whether the N₅⁻ had been made in solution.

Upon request from us, Prof. Butler extracted the observed ¹⁵N spin-spin coupling constants of N₃⁻ and MeOC₆H₄N₃ from their spectra.²⁶ Those are $|13 \pm 0.5|$ and $|11.4 \pm 0.5|$ Hz in CD₃OD-D₂O for N₃⁻, with and without Ce³⁺, respectively, which are in near perfect agreement with our prediction for N₃⁻. The observed values for MeOC₆H₄N₃ are reported to be |14.0| and |7.0| Hz for ${}^{1}J({}^{15}N_{1}{}^{15}N_{2})$ and ${}^{1}J({}^{15}N_{2}{}^{15}N_{3})$, respectively. While the computed value for ${}^{1}J({}^{15}N_{1}{}^{15}N_{2})$ also shows near

perfect agreement with the observed value, theory differs by as much as 6 Hz for ${}^{1}J({}^{15}N_{2}{}^{15}N_{3})$. [Prof. Butler in a private communication commented on the disagreement between the computed and measured value of ${}^{1}J({}^{15}N_{2}{}^{15}N_{3})$. On the basis of his comment, "the synthesis of ¹⁵N labeled samples like these is extremely difficult and there are none in the literature. We only happened on these samples by accident as side byproducts from our work; we were not trying to make them and we did not pursue them or get spectra of pure samples", we conclude that in this case both the theoretical and experimental values have large uncertainties and should be reevaluated. Also, for Ph-N₃, the calculated ${}^{1}J({}^{15}N_{1}{}^{15}N_{2})$ and ${}^{1}J({}^{15}N_{2}{}^{15}N_{3})$ values are 12.4 and 11.7 Hz, with the latter being smaller than the former, which is at least in line with the crude experimental J values for ${}^{1}J({}^{15}N_{2}{}^{15}N_{3})$.] The combination of the computed and measured spin coupling constants plus the observed characteristic doublet triplet pattern for the central nitrogen offers substantial evidence to support the presence of centrally ¹⁵N labeled N_3^- which could only be possible had N_5^- also been present. [Our preliminary data was presented at a meeting sponsored by AFOSR on September 15, 2006, at the Locker Hydrocarbon Research Institute and proposed measuring the spin-spin coupling constants as a means of resolving the conflicting assignments and predicted both ${}^{1}J({}^{15}N{}^{17}O)$ of NO₃⁻ and ${}^{1}J({}^{15}N^{115}N^{c})$ of N₃⁻ as well as N₅H coupling constants. Our results were made available to both groups.]

Summary and Conclusions

To summarize, high-level coupled-cluster theory has been applied to the chemical shifts for ¹⁵N containing species in the gas phase to calibrate the tool for such applications. Augmented with an empirical estimate of polarity based solution effects on ¹⁵N shifts in solutions, estimates of chemical shifts accurate to ± 10 ppm are obtained. These provide results that support the assignments of N₃⁻ central and terminal shifts that support the experimental assignments for N₃⁻ observed in its CAN solution by Schroer et al.⁹ and Butler et al.⁸ We predict that N₅⁻ will have a gas-phase value of -13.5 ppm and a solution value of -6.5 ppm. We also predict the scalar couplings for all relevant species, and conclude that, for N_3^- , the predicted results fall ± 1 Hz from those observed. Due to the short lifetime of N₅⁻ in solution, perhaps other spectroscopic techniques could be used to spectroscopically characterize the transient N_5^- in the experiment.

Acknowledgment. This work is supported by the United States Air Force Office of Scientific Research (AFOSR-F49620 01-1-0072).

References and Notes

(1) Lipschitz, J. Ber. Dtsch. Chem. Ges. 1915, 48, 410.

(2) Curtius, T.; Darapasky, A.; Müller, E. Ber. Dtsch. Chem. Ges. 1915, 48, 1614.

(3) Ferris, K; Bartlett, R. J. J. Am. Chem. Soc. 1992, 114, 8302–8303.
(4) Bartlett, R. J. Chem. Ind. 2000, 140–143.

(5) Fau, S.; Wilson, K.; Bartlett, R. J. J. Phys. Chem. A 2002, 106, 4639–4644.

(6) (a) Hahma, A.; Holmberg, E.; Hore, N.; Tryman, R.; Wallin, S.; Bergeman, H.; Östmark, H. *Int. Annu. Conf. ICT 33rd (Energetic Mater.)* **2002**, *62*, 1. (b) Östmark, H.; Wallin, S.; Brinck, T.; Carlqvst, P.; Claridge, R.; Hedlund, E.; Yudina, L. *Chem. Phys. Lett.* **2003**, *379*, 539–546.

(7) Vij, A.; Pavlovich, J. G.; Willson, W. W.; Vij, V.; Christie, K. O. Angew. Chem., Int. Ed. 2002, 41, 3051–3054.

(8) Butler, R. N.; Stephens, J. C.; Burke, L. A. J. Chem. Commun. 2003, 1016–1017.

(9) Schroer, T.; Haiges, R.; Schneider, S.; Christe, K. O. Chem. Commun. 2005, 1607–1609.

(10) Butler, R. N.; Hanniffy, J. M.; Stephens, J. C.; Burke, L. A. J. Org. Chem. 2008, 73, 1354–1364.

(11) Christe, K. O. Propellants, Explos., Pyrotech. 2007, 32, 194–204.
(12) Burke, L. A.; Butler, R. N.; Stephens, J. C. J. Chem. Soc., Perkin Trans. 2001, 2, 1679–1684.

(13) Gauss, J.; Stanton, J. F J. Chem. Phys. 1995, 103, 3561-3577.

(14) Gauss, J.; Stanton, J. F. J. Chem. Phys. 1996, 104, 2574-2583.

(15) Perera, S. A.; Sekino, H.; Bartlett, R. J. J. Chem. Phys. 1994, 101, 2186-2191.

(16) Perera, S. A.; Nooijen, M.; Bartlett, R. J. J. Chem. Phys. 1996, 104, 3290-3305.

(17) ACES II is a product of the Quantum Theory Project, University of Florida, Authors: Stanton, J. F.; Gauss, J.; Perera, S. A.; Yau, A.; Watts, J. D.; Nooijen, M.; Oliphant, N.; Szalay, P. G.; Lauderdale, W. J.; Gwaltney, S. R.; Beck, S.; Balková, A.; Bernholdt, D. E.; Baeck, K. -K.; Rozyczko, P.; Sekino, H.; Huber, C.; Pittner, J.; Bartlett, R. J. Integral packages included are VMOL (Almölf, J; Taylor, P. R.), VPROPS (Taylor, P. R.), and ABACUS (Helgaker, T.; Jensen, H. J. Aa.; Jørgensen, P.; Olsen, J.; Taylor, P. R.).

(18) Stanton, J. F.; Gauss, J.; Watts, J. D.; Szalay, P. G.; Bartlett, R. J."ACES II Austin-Mainz-Budapest version, a quantum mechanical chemical program package" 2005, Contribution from Auer, A. A.; Bernholdt, D. B.; Christiansen O.; Harding M. E.; Heckert, M.; Heun, O.; Huber, H.; Jonsson, D.; Juselius, J.; Lauderdale, W. J.; Metzroth, T.; Ruud, K. Integral packages included are VMOL (Almölf, J; Taylor, P. R.), VPROPS (Taylor, P. R.), and ABACUS (Helgaker, T.; Jensen, H. J. Aa.; Jørgensen P.; Olsen J.; Taylor P. R.).

(19) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007-1023.

(20) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358-1371.

(21) Kendall, R.; Dunning, T. H., Jr.; Harrison, R. J. Chem. Phys. 1992, 96, 6796–6806.

(22) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571– 2577.

(23) Auer, A. A.; Gauss, J.; Stanton, J. F. J. Chem. Phys. 2003, 118, 10407–10417.

(24) Perera, S. A.; Gregušová, A.; Bartlett, R. J. To be submitted.

 (25) Levy, G. C.; Lichter, R. L. Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy; Wiley Inter Science Publications: New York, 1979.
 (26) Butler, R. N. Private communication.

(27) Jameson, C. J.; Jameson, A. K.; Oppusunggu, D.; Wille, S.; Burrell,
 P. M.; Mason, J. J. Chem. Phys. 1981, 74, 81–86.

(28) Berger, S.; Braun, S.; Kalinowski, H.-O. NMR-Spektroskopie von Nichtmetallen, Bd. 2; Wiley-VCH: Berlin, 1992.

(29) Christe, K. O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. Angew. Chem., Int. Ed. 1999, 38, 2004–2009.

JP809267Y